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=const is a solution of Eq. (Al12) corresponding

to the eigenvalue ¥=1. We shall now show that
there are no other solutions corresponding to ei-
genvalues of modulus unity. Let y(¢)be a solution of
Eq. (Al12)and ¢, be such that |y (¢,)| is max-
imum. Then one can easily prove using Eq. (A12)
that

7 |y @m) |2 1Y | » (A13)

where |y | pap is the maximum value of |y (¢)! in
the region of ¢ where K(¢,,, ¢) is different from
zero. This region has been denoted by d,(¢,,)

previously [Eqs. (A2) and (A5)]. The equality in
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(A13) holds only if y(¢) is constant in d,(¢,). Thus,
vl <1 except if y (¢) is constant in d,(¢,) and such
that 1y (@)l = ly(¢n)|, ¢E€d,($,). In this last case
one can repeat the argument taking as ¢, any point
in d,(¢,,). Then, it follows, using in addition the
continuity of d,(¢,,) that [v| <1 unless y(¢) is con-
stant in d,(¢,,) and such that |y (¢)I= 1y (dn.)],
¢Ed,(p,,). Repeating the argument again and again
we conclude that |y¥| <1, unless y(¢) is constant in
every d;(¢,) (=1,2,3,...). But we have shown
that for large enough j,d,(¢,,) coincides with the
whole region [- 37, 37]. Thus |v| <1 unless y (¢)
is constant everywhere.

*Work was completed when one of the authors (E.N.E.)
was at the University of Virginia.
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The imaginary part of the transverse dielectric tensor has been calculated for sodium using
a two-band model and including both phonons and the interactions between conduction electrons

in the random-phase approximation.

It is found that the resulting expression reduces to the

Hopfield dielectric constant for the case of an electron gas in a perturbing crystal potential.
Reasonable agreement with N. V. Smith’s data has been found in the range of photon energies
0.5-3.0 eV. However, at higher energies the agreement is not as good, since many-body

effects become more important in this region.

I. INTRODUCTION

In recent years it has become possible to mea-

sure the optical absorption of the alkali metals over
a fairly large range of photon energies. Mayer and
co-workers!™® performed a series of careful ab-
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sorption experiments on the alkalis over photon en-
ergies 0.5-4 eV. The results were surprising be-
cause of the presence of an “anomalous” peak be-
low the direct interband threshold. This peak was
small in the case of sodium and appeared to be due
to indirect (phonon-assisted) interband transitions.
However, for potassium the anomalous peak was
quite pronounced and seemed to be due to a mecha-
nism other than indirect transitions. In order to
verify the results of Mayer et al., Smith? tried to
reproduce the data for sodium and potassium. His
data showed the presence of a direct interband peak,
but no anomalous peak in the sodium and potassium
absorption curves was found.

In spite of the discrepancies between the two ex-
periments, many calculations have been performed
in order to explain the data. One of the earliest
computations of the direct interband absorption in
the one-electron approximation was performed by
Butcher.® When a realistic pseudopotential coeffi-
cient was used in his expression, the magnitude of
the absorption did not agree with the experimental
results. This suggested that the effects of the Cou-
lomb interaction between electrons might be im-

portant in the optical absorption of the alkali metals.

Wolff® calculated the random-phase-approxima-
tion (RPA) correction to the optical conductivity of
an electron gas using a statically screened Coulomb
interaction and found that this correction vanished.
Therefore, contributions to the optical absorption
of the electron gas beyond the RPA had to be con-
sidered.

Both Overhauser’ and Animalu® attempted to in-
clude collective effects by using an optical pseudo-
potential to compute the direct interband absorption
of Bloch electrons. Since the effects of the phonons
were neglected, these calculations had to be super-
imposed on a Drude background absorption in order
to compare the results with the experimental data.

Hopfield® attempted to include lattice effects by
choosing as a model for the solid an interacting
electron gas in a perturbing crystal potential.

Thus, he was able to show explicitly the dynamic
screening of the electron-ion interaction by the
longitudinal dielectric constant of the electron gas.
However, the results did not differ significantly
from Butcher’s calculation when the Hartree dielec-
tric constant was used for the screening.

Both Nettel'® and Miskovsky and Cutler!! per-
formed calculations in the anomalous region by in-
cluding the electron-phonon interaction to second
order in perturbation theory. The results were in
reasonably good agreement with Mayer’s data for
sodium below the direct interband threshold. Fer-
rell!? pointed out, however, that Hopfield’s formula-
tion could be extended to include the indirect as well
as the direct transitions. Therefore, the point of
view of this paper will be to generalize Hopfield’s

results by considering a system of interacting Bloch
electrons in a perturbing electron-phonon potential.
The major emphasis will be on including the elec-
tron-phonon interaction and evaluating the optical
matrix elements using a two-band model and the
RPA for the electron-electron interactions.

II. FORMALISM

The starting point of the calculation is Pines’s!?
form of the imaginary part of the transverse dielec-
tric tensor for a cubic solid in the optical limit:

Ime, , (0, w) = (4712 e2/w? 2., [(0]3 1(0) |n) (n]j,(0)]O)
X 8(w = wpe) = (0|7, (0) |n)

x (n|3,1(0)]0) lw+wyg)] . (2.1)
The vth component of the microscopic current op-
erator is given by

o= Be
i

(2.2)
=1 My

and the optical matrix elements appearing in Eq.
(2. 1) are taken between the eigenstates of the Ham-
iltonian describing the solid:

H=HZ+H,+H,,, (2. 3a)

N 2 N N
HeB: El Zl:nio + ! Vlattics(Fi)*'% iEl Vc(Fi";l)’
(2. 3b)
H= Zoor+3 & V.(Rq -Ryg) , @. 3c)
N
Ho= 2 [U(F-RyY) - (UFi-Ry) )],  (2.3d)

i,a=1

where (T;, ;) and (R,, P,) are the positions and
momenta of the ith electron and oth ion, respec-
tively. The quantity (U,(¥,- R, )), is the average
of the electron-ion pseudopotential over the system
of ions, and 7w, is the energy difference between
the nth excited state and the ground state of the
Hamiltonian of the solid. In using Pines’s form of
the dielectric tensor, the induced electromagnetic
fields have been neglected. Thus, the calculation
only includes the response to the external field, as
pointed out by Kadanoff and Martin. !*

The Hopfield result can be obtained from Eq.
(2.1) by assuming the following form for the Ham-
iltonian of an electron gas in a perturbing crystal
potential:

H’=H§+H, +H,;,

ngi ﬁ_+l i Vc(Fi—Fj)y

=1 2mg 2 45y

(2. 4a)

(2.4b)
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N
Hy = Z UO(;i_ﬁa) ’
i,a=1

where H, is defined by Eq. (2.3c). After the optical
matrix elements in Eq. (2.1) are expanded to sec-
ond order in the perturbing potential H,;, they can
be evaluated by making use of the fact that the
eigenstates of the electron-gas Hamiltonian are also
eigenstates of the current operator. The Hopfield
dielectric constant can then be written in the form

(2. 4c)

Ime,, (0, w)
1 G | _O0y(@ |2, = -
'T (2,") €, q’ w) qul(q)lm€||(q’ w) )

(2.5)

where l-lo(a ) is the Fourier transform of the elec-
tron-ion pseudopotential, S ,(a ) is the structure fac-
tor of the ion system, and €,(q, w) is the longitudi-
nal dielectric constant of the electron gas. The
dynamic screening of the electron-ion pseudopoten-
tial is explicitly displayed in Eq. (2.5)

The calculation of the dielectric constant of the
solid described by Eqs. (2. 3a)-(2.3d) proceeds
basically as in the Hopfield case, except that H,,
replaces H,; and the states are interacting Bloch
instead of electron-gas states. However, since
Bloch states are not eigenstates of the current op-
erator, the evaluation of the optical matrix elements
in Eq. (2.1) becomes very difficult. One way to by-
pass this problem is to reformulate the expression
for the dielectric constant so that a diagrammatic
expansion of the matrix elements can be carried
out. This method has two advantages. First, the
diagrammatic technique facilitates the summation
of a particular class of terms in a perturbation
series. Second, this procedure involves the calcu-
lation of matrix elements between noninteracting
Bloch states which can be approximated by the near-
ly-free-electron model. By using the integral rep-
resentation of the energy 6 functions appearing in
Eq. (2.1) and the definition of the Heisenberg oper -
ators, the transverse dielectric tensor can be re-
written as

Ime,, (0, w) = (47%%/w? Re[M,, (0, w) -M,,(0, - w)],

(2.6a)
Mvv(o, w)=[‘d_t
0

where IO) is the ground state of H, and T is the
Wick time-ordering operator. The matrix elements
in Eq. (2.6b) can now be expanded to second order
in H,, by using the S-matrix formulation of pertur-
bation theory and the linked-cluster theorem. After
introducing the specific form of H,, the following
expressions are obtained for the zeroth-, first-,

et | T(j,®)j0)|0), (2.6b)
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and second-order contributions to the matrix ele-
ment:

dt o
M0, w) =f — e KoY T(5,(t)710)) S, | 0%z ,
0
(2.7a)

MP (0, w) (2.70)

M2(0, w) fW T)on(q)U*( q’)

Xf aQ Sl(q7 q ’ Q) Xse(a’ E', Q, w)w ’ (2. 7C)
where
[ dner o= s, 7, 0

=(04| T(6p A, t)0p}(q’, t"' )]0y, (2.74)

Se(a, (-l.,’ Qr w)w

iwtf”dtlf dtue-m(t'-t")

x (08| T (j,(8)750)p(q, ¢ pe(Q’, t'"))S,e| O .
(2.7€)

The states |O;) and | O0) are the ground states of
H, and H¥, respectively, where

= Zl: Zprizo + i_E Vlattlce(ri) (2.8a)
1 & - -
Hy(0)= 5 2 V(r,-1y, (2. 8b)
i,4=1
and
S,e=Pexp[ —i [ _dtH,(£)] . (2. 8¢c)

The density operators appearing in Eqs. (2.7d) and
(2.7e) are the Heisenberg representations of

N - -
50,(&)= E [e-iq-na_<e-lu-na>r]

a=1

(2.9a)

and

N .

po(d)= 2 e teri, (2.9b)
i=1

The frequency integral over 2 in Eq. (2.7c) can be
approximated in the following way. The ion form
factor S;(q, q’, Q) has its largest value when € is
at the phonon frequency. Since the phonon frequency
is much smaller than the optical frequency w it can
be neglected in the electron factor. Thus,

S.(a, q’, 2 w),,~S(q,q’, 0, w,,, (2.10)
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and Eq. (2.7c) becomes

M2, - [ 5% [ b B@TE)

x 81(a, 4)5,(q, 4’, 0, w),,, (2.11a)
where the structure factor is defined as
SAd, d= [.des;(q, ', Q) . (2.11Db)

The next step in the calculation is to replace the
operators in Egs. (2.7a) and (2. 7e) by their second-
quantized forms and expand the matrix elements by
Wick’s theorem. Therefore, a model for the lattice
Green’s function and ion factors used in the Wick
expansion will be discussed in Sec. III.

IIIl. MODELS

In order to compute the optical properties of the
alkali metals, a two-band model must be used for
the electrons because the photon energies are large
enough to produce interband transitions. Therefore,
in the reduced-zone scheme the one-electron Schro-
dinger equation is

HY(K, 1) =€,(RW,(K, T) , (3.1a)
where K is the electron wave vector in the first
Brillouin zone (BZ),

HE =p¥/2mg+ Vale 'S +o719%) | (3. 1b)

and V3 is the lattice pseudopotential coefficient cor-
responding to the (110) reciprocal-lattice vector Q
Since the wave function ¥,( K, T) is a Bloch wave,

it can be expanded in terms of plane waves for a
system of unit volume:

(X, F)=gD Xo(K, Qo)e! KrdarF (3.2)

where Q,, {0, Q}. The wave-function coefficients

(K Q ) have the well-known periodicity and com-
pleteness properties stated in Kittel, !’

It is necessary to specify the wave-function coef -
ficients and energy bands ¢,(K) in order to define
the two-band model completely. There are two ap-
proximate solutions of Eq. (3.1a) which can be
written in closed form. The perturbed-plane-wave
(PPW) solution is obtained by assuming that Vg is
small and applying nondegenerate perturbation
theory to solve the Schrodinger equation. This
solution approximates the free-electron-like be -
havior of the real bands for small values of K but
breaks down near the zone boundary. The nearly-
free-electron model (NFE) makes use of degenerate
perturbation theory to solve Eq. (3.1a) but gives
results which approximate the real bands only for
K values near the zone boundary where the energy
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gap occurs. Since phonons are present in the sys-
tem, they can transfer large enough momenta to
the electrons to excite them into states near the
zone boundary. On the other hand, the photons have
enough energy to excite electrons from states near
the bottom of the band. Therefore, a composite
model (CM) must be used which includes both the
PPW and NFE models. An artificial cutoff wave
vector K, is introduced, below which the PPW model
is used and above which the NFE model is employed.
The criterion used to determine K is

G

_13QI-K&
&(Q) 3QI
where G is the energy gap at the (110) face of the
BZ and

(Q)=72Q|%/2m, . (3.4)

The criterion was checked by using Ham’s'® band
calculations for the alkali metals to estimate K, and
comparing it to the value calculated from Eq. (3. 3).
The criterion was fairly well satisfied for all alkali
metals except possibly rubidium and cesium. The
value of K, calculated from Eq. (3.3) using 0. 45 eV
for the energy gap of sodium was 97.3%of 13 Q I.

In order to match the PPW wave functions and
energies to the NFE values at K;, a momentum-
dependent lattice-pseudopotential coefficient is in-
troduced,

(3.3)

|K|>K, (NFE)

| K| <K, (PPW) , (3.5)

_(wy-JYa
va(K) -{Va
as well as the energy shifts E,. The coefficient
V3 is determined by the energy gap G at the (110)
face of the BZ,

|val=3 (3.6)

The gap value of 0.45 eV for sodium results from
an analysis by Ashcroft of Lee’s!” sodium data. The
remaining pseudopotential coefficient is evaluated
from the condition that x,,(K Q ) be continuous at
K,. Similarly, the energy shifts E, are calculated
from the continuity condition on the band energies.
The resulting composite model has one deficiency
in that the slope of the energy is discontinuous at
K,. However, this is not a serious fault since the
derivative of the energy bands is never used in the
calculations, and the energy bands occur inside
momentum integrals which average over the dis-
continuity in the derivative.

The lattice Green’s function is defined as

Go(Tt, T 't')= =i O T (T (T 't )| 02y,
(3.7)

where ¥(rt) is the field operator of an electron in
the periodic lattice potential, T is the Wick time-
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ordering operator, and IOS ) is the many-particle
ground state of the noninteracting Bloch Hamiltonian
HE. Substituting the expansion of the field operators
in terms of Bloch states into Eq. (3.7) results in
the following form for the lattice Green’s function:

- “dw R.7
G, £ ) - Z/m ar [ o

ﬁy §+§d1 w)q

e-i(i+3¢)*?'

X e-iw(t-t’) GO( (3 Ba)

where

R 0 &, Q)
E e ()10, 3

The notation 6, % is defined in the two-band model
as

Go<§, E*'-Q.av (3. 8b)

5 __{+61fn 2orn-= 1and|K[>KF
%=

6if n=1and |K|<Kp , (3.8c)

where 0 is an infinitesimal quantity and K is the
Fermi wave vector. Notice that the electron mo-
mentum is not conserved by this propagator since
the electron can pick up or lose a momentum h’-Q'a
by interacting with the lattice. The wave-function
coefficients and band energies appearing in Eq.

(3. 8b) are evaluated in the composite model de-
fined above.

A simple model is adopted for the electron-ion
pseudopotential which was used by Foo and Hop-
field'® in their calculation of the optical properties
of alkalis. In this model only the s-wave compo-
nent of the potential is retained. It is assumed
that the conduction electron sees a constant po-
tential inside a radius R of the equilibrium position
of the ion and a Coulombic potential outside this
radius, The radius parameter is a measure of
the size of the ion and is determined by equating
the ground-state energy to the experimental ioniza-
tion energy. Therefore, the potential has the
form

Uo(F) = {‘ Zi/r ir>R

~-Z%¢R if r<R

(3.9)

where Z is the valence of the ion and R=1. 726 A
for sodium. The Fourier transform of the model
potential is

Uo@) = - (47Ze*/q?) (singR/qR) .

The dynamic form factor of the ion system is
obtained by inverting the Fourier transform in the
definition (2. 7d). By interpreting the matrix ele-
ment as a thermal average over the phonon-density
correlations, the following result is obtained:

i (2n)
MV,

(3.10)

e-[W(q‘. T)+W(d*,T) ]

5,(d,§’', Q)=
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<& (p,d)]

XX 1)

= Dy, d, Q)
p=1 wolp,d) o
x 2 6@-d'-Qa), (3.11a)
Qm
where V,is the volume of a unit cell. The bare-

phonon propagator at finite temperature 7 and po-
larization p is given by

2wo(p, §)n(p,d) + 1)

V= =2 03p. D) i

D 0p (a’

2wo(p, Q) n(p,d)
A H . e

where wy(p,q) is the bare-phonon dispersion rela-
tion and #n(p, q) is the phonon number operator.

The Debye-Waller factor appearing in Eq. (3. 11a)
is calculated from the expression
d 13&p, D)1
Wi, T)= =
@ D=3 ,‘.? 52 @ wolp, D)
x(2n(p,f)+1), (3.11c)

where E(p,f) is the polarization vector of the pho-
nons. The structure factor for this system was
defined by Eq. (2.11b). The above expressions
were derived within the single-phonon approxima-
tion. When these results are used in the calcula-
tion, it will be assumed that only phonons traveling
in the [110] direction contribute; therefore, trans-
verse phonons will not be included in the sum over
polarizations in Eq. (3.11a).

1IV. DIAGRAMS

The simplest contribution to the dielectric con-
stant is the term which is zero order in the elec-
tron-ion interaction and given by Eqs. (2. 6a) and
(2.7a). When the matrix element is expanded by
Wick’s theorem, the result can be expressed dia-
grammatically as illustrated in Fig. 1. Only the
RPA graphs to second order are shown. These dia-
grams can be evaluated by using the Feynman rules
listed in the Appendix. However, the contributions
from Figs. 1(b), 1(c), and higher order vanish be-

Q-Gw

(a) (b) (c)

FIG. 1. (a) Basic polarization diagram for a periodic
system which does not include phonons. (b) and (c) First-
and second-order RPA corrections to (a).
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(a) (b) (c)

FIG. 2. Class-A diagrams which are second order in
the screened electron-ion interaction. (a) Vertex correc-
tion; (b) and (c) self-energies due to the phonons.

cause only one electron-photon vertex appears in
each bubble. Since each vertex introduces a factor
K, into the momentum integral, the integrand is an
odd function of the electron momentum for solids
with inversion symmetry and vanishes when inte-
grated over the Fermi sphere. As pointed out ear-
lier, this result was obtained for the electron gas
by Wolff. The graph in Fig. 1(a) is the only non-
zero contribution in the RPA and gives essentially
Butcher’s result for the optical absorption due to
direct interband transitions:

4n%e? 2 d’K [~ dv
© &
et 0 0=y TR Gy | o 2 Ko

X (Ko +Qay)Go (K, K+Q,, v) Go (R+Qq, K, v+w).

(4.1)

The second-order term in the electron-ion inter-
action given by Eqs. (2.7e) and (2.11a) can be ex-
panded similarly. Here, two classes of diagrams
(classes A and B) are retained. The class-A dia-
grams are shown in Fig. 2. In this case the elec-
tron-electron interactions enter only through the
screened electron-ion pseudopotential, as illus-
trated by the integral equations for the renormalized
interactions in Fig. 3. These equations can be ex-
pressed in the following forms:

U(T,q, Q)=0,(8)8(§-T)-iv,(T)
x23 PP (&,Q) (T +Q,+Q,,d, Q),

(214

(4. 2a)

where G =@ +Q, +Q;+Q,+Q;, the pair bubble P is
given by

ﬁm(é',n):zf

xGo(ﬁ+§' +QD,K+§’ +Q,+Q,, v+Q),

d’K (=dv
(21)3 i 21r

o(K K+QP’ 14

(4. 2b)

and the Fourier transform of the Coulomb interac-
tion is
V(T)=ane¥/ ||

Similarly,

(4. 2c)
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(8)s(G-
x 25 P°(G, Q) U*(q

(214

[7*(&’67 Q)=f]: al)_lvc(c)

1 G-Q,-Q,, 2), (4.3a)

where G=3 - Qu— Q- Q, - Q; and the pair bubble P
is defined by

P""’(ﬁ Q) szf” dV O(K K+pry

XGy(K+G-Q,,K+G, v+Q). (4.3b)

Since Eqs. (4.2a) and (4. 3a) are in general twoinfi-
nite sets of algebraic equations coupled by the re-
ciprocal-lattice vectors, they cannot conveniently
be solved unless a two-band model is used. In this
case the solutions can be expressed as

U(a'+6a,c‘x,n)=-€—f%°a(—a)—) 8(d-7 -Qa) 4.42)
and
7 Q(‘g’) -> = _
U Qa, Q) "(ar’ Q) 5(q"q Qa), (4- 4b)

where Q, ={0, @} and the longitudinal dielectric
constant €, (g, Q) is

€(d, Q) =1+i V,(§) P>, Q)

=1+i V,(q) P*%(q, Q). (4. 4c)

Now the contribution of the class-A diagrams to the
second-order term in the transverse dielectric ten-
sor can be obtained by combining Eqs. (2. 6a),

(2.11a), (4.4a), and (4.4b). Therefore,
( 4n%e® d¥g Ay’ U(q UNG)
Z)(O w)= wz f(zw)zf(Zﬂ)s Eu(%, 0) Eu(oa; 0)
XS, T)Re[SI(T, T, 0, ), = ST, T, 0, —w)u],
(4.5)

U G F
_ ° -iv,
O — . + —ve

O

Il
¢« <
©»
+
!
.‘
o

(b)

FIG. 3. Representations of the integral equations for
the outgoing and incoming screened electron-ion vertices.
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from the integral equation represented pictorially
in Fig. 5. The corresponding expression is

iV (G, T, w)=-iV (8 6(CG-T)

—ZVc(G) E Pl"(ay w)[—ivsc(a_QA_Qra GI; (l))],

A, T

(4.6)
where a=a_QB_QY—QB) §,=GI+QG+QT7+QpJ and

the pair bubble PM* was previously defined in Eq.
(4.3b). Notice that the momentum of the photons
corresponding to the screened Coulomb propagator
is not conserved but can change by a reciprocal-
lattice vector. Now the two-band model is used to

FIG. 4. Class-B diagrams with screened Coulomb solve the coupled set of equations 4.6):
interactions. These diagrams are responsible for the v.(§ Q - Q )
dynamic screening of the electron-ion interaction in the sco\q = oy G+, @

limit of a translationally invariant system.

:E_..V(Ic’%_é% (-7 -Q-Qo 4.7

where the notation S means that only class-A dia-

grams are included in the electron factor in the where @,={0,3} and @;={0,Q}. The contribution
square bracket, It should be noted that the class-A of the class-A and -B graphs to the second-order
diagrams produce a static screening of the elec- term can now be written within the two-band model
tron-ion pseudopotential. as

The class-B diagrams shown in Fig. 4 must also

be included in Eq. (2. 7e) in order to obtain a result 472e? d d% U3 U3(T)

which reduces to the Hopfield dielectric constant in me (0, w) = w2 ) @n)¥ ) (2n) €,(F,0) €(T,0)
the limit of a translationally invariant system. The
electron-electron interactions occur in both the xSAT, T )Re[S3*5(T, T, 0, w),
screened electron-ion vertices and the screened- AsB > =
Coulomb-interaction line between the pair loops. -5.7(4,T,0,-w)], (4.8a)
The screened Coulomb interaction can be obtained where

o

S:‘B(ay 5,90 0.’) 4 '——2' E dsEf

«Brb

-

X 5(6—5, - -éa_Qﬂ - 67‘65)(1{1,' +Qav)GO(-IE7 IE*'éw V) Go(ﬁ*é a’ i"’éa +68, V"’“’)

- - - - . - - L, - - .

X[(Kv’ +qy — Qﬁv) Go(ﬁ+q —Qy _QG: K+q -Qa, V+w) GO(K+q—QB’ K+q, V)+Kv’ Go(ﬁ—éw E, V+w)

- -

X(;O(K"’E_Qr_Qm K+q-Q,, viw)+ (Kv+Qav+QBv) GO(K+Qu+QB, E+6a+65 '*'67; v)

X Gy(K+3+Qa+Qp+Qy K+3+Qq+Qu+Qy+Qs )] = [iV,(3)/€n(d, 0)]8(4-7)[P,(T, 0,w) (4.8b)

—
and

3
P,(4,0,w)=-2 ((;,Sf g: K,Gy(K K, v)

XGO(-IE, ﬁ,v+w)Go(E+a,ﬁ+a,y+w) . (4.8c)

FIG. 5. Representation of the integral equation for the
If the system is translationally invariant, as in the dynamic Coulomb interaction in a periodic system.
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Hopfield case, the lattice Green’s functions in Eq.
(4. 8b) are replaced by

= n(K) 1-n(K)
Gl V)= e =i v %)
where
= (1 if IKl<Kgp
"(K)’{o if IKl>Kp (4. 9b)

The replacement leads to the following result for
the electron factor:

2
Ww=—25 [P(§, w) - P(§ 0)]6(§-7)

S$+B(a’a" 07 mow

g2 =iV Q) rp = - . .
=" m[P(q,w)-P(q, 0)Ps(q-q’)
(4.10a)
where
P(q, w)=2i (2 )3 n®)[1 -n®+3)]

1 1
X —aw- = - —— o .
(w - €,(R) - €, +q) +i5 w+€oz=ﬁ+q)—£o(K)—i6>

(4.10p)
Taking the real part of Eq. (4.10a) gives
ReS;"?(q,q, 0, w),,
2
q - - €u(q, 0) -
= [ ReP . (4.10
;{w“z @-9) | =5 PRCA) (q, w) . (4.10c)

When Eq. (4.10c) is substituted into Eq. (4.8a), the
Hopfield dielectric constant as given in Eq. (2.5)

is obtained. Notice that the dynamic screening
replaces the static screening only because of the
special simplifications which occur in the transla-
tionally invariant case. Namely, the dielectric
tensor can only depend on ¢ in the Hopfield sys-
tem, whereas the periodic system contains the
reciprocal-lattice vector 6 and thus the dielectric
tensor can be expressed as a linear combination of

o 6o G
= + @—a—

(a)

"
P

®) *@ i

(b)

FIG. 6. (a) Dyson equation for the renormalized lattice
Green’s function; (b) lowest-order contribution of the
phonons to the self-energy.

Dp(q,w) Dop (dw) Dop(d.w) Dp(F,w)
5% = +  =={TT Jwwtwen

(a)

U g* ] -ivg o*
® - O
3 g’ 3 ¥

FIG. 7. (a) Dyson equation for the renormalized pho-
non propagator; (b) first two terms in the expansion of
the Coulomb contribution to the self-energy.

all products of ¢, and @ ,. Thus, there are static
as well as dynamically screened terms in the di-
electric tensor of the periodic system.

Up to this point, only second-order electron-
ion interactions have been taken into account in
the transverse dielectric tensor. I has been shown
that the class-A and -B terms reduce to the Hop-
field result for a translationally invariant system.
Now the above results will be extended to higher or-
der in the electron-ion pseudopotential by including
the phonon contribution to the self-energy of the
particle propagator. Furthermore, the phonon
propagator will also be renormalized, and the zero-
order class-A and -B diagrams will be recalculated.

In Fig. 6(a) the Dyson equation for the lattice
Green’s function is shown. Since the electron-
ion vertex appears at least to second order in the
self -energy in Fig. 6(b), the umklapp term with

" -d - Q will be neglected compared to the normal

term, i.e.,

0, - QS,.3-9)
0,(@) S;(q,d)

Therefore, the renormalized lattice Green’s func-
tions can be approximated by

(4.11)

- = G (k, K 14
G(K,K,v)= -2 (& )G Rv)’ (4.12a)
GR+Q. K, v)=G(K+Q,K,v), (4. 12b)
GK,K+Q,v) =G(X,K+Q,v (4.12¢c)
0, w
0w
(a)
FIG. 8. Renormalized zero-order (a) and vertex (b)

diagrams which correspond to Figs. 1(a) and 2(a).
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where
7 —1 daq (70(6) 2'[” > >
2(K,v)~zf——-5(2ﬂ) «cqol J. des; @, q, Q)

XGO(K+-&,-IE+E, v+ Q). (4.12d)
Since the optical properties are of primary interest
here, a separate calculation of the phonon contri-
bution to the self-energy including the effects of
periodicity will not be done. Instead, Schrieffer’s!®
evaluation of the imaginary part of the self-energy
of an electron gas will be used, and the real part
will be neglected in order to facilitate the numerical
calculations, The imaginary part of the self-en-
ergy gives rise to a finite lifetime for an electron
or hole because of the possibility of decay by the
emission or absorption of a phonon:

ImZ (Kp,v)P=T(v)

H4/9m 3y, Q, [(v - €5)/9)3, v<er+ R,
34/9m By, Q,, v>€r+Q, (4.13)

where &, is the ion-plasma frequency and 7, is
given by (41/3) r3ad=1/n,, where n, is the elec-
tron density and a, is the Bohr radius.

The Dyson equation and the corresponding self-
energy for the phonon propagator are shown in
Figs. 7(a) and 7(b). The net effect of including the
self-energy in the phonon Green’s function is to
replace the bare-phonon spectrum wy(p,d ) by the
real-phonon spectrum w(p, ) in the denominator
of the longitudinal-phonon propagator, as pointed
out by Schrieffer!®:

Du(il', Q) =

zw?n(a) <nu(a) +1)
Q (

Q) +in

—wy

FIG. 9. Renormalized class-B diagrams which corre-

spond to Fig. 4.
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FIG. 10. Plot of Ime® vs w for Na at 293 °K showing
the effects of various approximations for the self-energy
on the direct interband absorption.

2w (6)(”11@))
- i@ -in (4.14a)
where

@y (ﬁ) =Wou (a)/[eu (a, 0) ]1/2 . (4. 14b)

Now the previous results will be recalculated
using the renormalized propagators in the zero-
order diagram of Fig. 1(a), the bare-vertex dia-
gram of Fig. 2(a), and the class-B diagrams of
Fig. 4. The corresponding renormalized graphs
are illustrated in Figs. 8 and 9. Note that the
self-energy diagrams of Figs. 2(b) and 2(c) are
not recalculated since they are already included
in the renormalized zero-order graph. After sub-
stituting the new propagators and performing the
frequency integral in Eq. (4.1), the phonon contri-
bution to Butcher’s result is obtained:

4n%e? d°K 74 74
Ime(0,w)= —5— Ty | &, 0)]? [ x(K, 0)| 2
mow KK )

r/n =
) {KE[[ w+ €(K) - Ea( )+ = 0w + &, (K) - EZ(K))]

—Kqua[w +€1(K)-53(K)]}. (4. 15)

Note that the d-function terms are produced by the
umklapp term of the lattice Green’s function,

while the Lorentzian is due to the normal term.
The numerical results of this expression are
shown in Fig. 10 and discussed more fully in Kara-
kashian and Bardasis. %

The vertex diagram of Fig. 8(b) can be separated
into various terms according to the type of transi-
tion to which they contribute. After the frequency
integral in Eq. (4. 8b) is evaluated, the transitions
can be identified by inspecting the form of the en-
ergy-conserving 0 functions or Lorentzians. These
transitions are labeled process 1, 2, or 3. Process
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1 is a direct interband transition, process 2 is an
indirect (phonon-assisted) transition, and process
3 is an intraband transition. The three processes

an%e? [ d°q
) -
Imew (0,(.0)— m%wg (217)3

_J

€ (d,

) | < [ , g
S s - el
0) 1@,d) Re é e (,q,0,w),, &G, w)

are illustrated in Fig. 11. Thus the final form of
the renormalized “second-order” dielectric tensor
can be written as

1V, @) Pﬁ(a,o,w)]

U(§ 7 q- - 3 - > X
*Eg(i%_) ;[%% $;@,§-Q)22 Res® (q.q—Q,O,w)w§, (4.16a)

where

p=1

| x,(K, 0)121x,(K+d, 0)12] x5 (R +d,0)12
’

PG . i d*K ,
v\q, 0,w)=Zqu (?—T ”l(l-nm)
Jym=l 77)

w+e —€r+iT(1 +06p,1)

61—€,

(4. 16b)

The prime_.on a quantity means that the argument of the quantity is §+6, whereas unprimed quantities have
argument K, The electron factors are given by the following expressions:

mE * d’K LA
’ ’ bl = =
Res‘ (q q,0 w),,,, 2[ W nl(l na) (w 1€ - € !+r2

T 1224N) + T12(N)

y [T,,i,,z“(N) + T2 (N)
(€1 - €)(e; - €)

* (5{' 51)(52 - €)

Q2> > daK 4
ReS.”d.q,0 w),,=-2 W%(l-”a

) (w+€1—

TN + TUAN)  TLZN)+ T jﬁm(N):l
¥ 4,17
T el € ) el - €5) (e;-€)ez—¢€5) |1 (4.17a)
r/n
Eg )2+ r’

TIZN)+ TL2(N)  TR2WN) + T2 (N)

5 [Tii“(N) < TEMN) TR0« TE2W)
(€2 - €;)(€z - €5)

(€1~ €)(ez~ &)

and

] , (4.1™)

(€] - €,)(e;- €5) (e7-¢)?

2/«

- a’K
Res::i)(quyo w)vv=_ zf'(z—,”F nl(l_nl’) (w+€1_‘€1’)?+4fz

TizYN) , FEH ()

T TR | T TEw)

y [zj;"w)d:;“(m
(& - &)

The index p in Eq. (4. 16a) specifies the process,
while N or U indicates a normal or umklapp term.

The umklapp terms have the same form as the cor-

responding normal terms given in Eqs, (4. 17a)-
(4.17c), except that the Lorentzians are replaced
by & functions. The terms in the second square
brackets are the optical matrix elements, where
the momentum tensors in the numerators are de-
fined as

T, B,7,0)=(K,+Qu)K, +q, - Qs) x; (K, 0)x
X(R,Qa) xi (K, Qo) X (K, Qo + Qs ) X (B + 7, - B, - Q)

XX:(I-E*’av‘Qo)Xn (E+av_60)x:(ﬁ+q9 0) (4. 183-)

(€2— €,)(€; - €5)

] . (4.17¢c)

(ef-e)(el-€3) © (e3-e€)lel - €)

|
and

T, By, 6)= (K, +q,+ Qu) (K, - Q4)x, (K +d, 0)

- - -

XxxF K+, Qo) xs B+, Qo) XK +d, Qe +Qp)

X xm(K, - Qy - Q) XK, - Qo) xa (K, - Qo) x* (K, 0).
(4. 18b)

In the normal terms, all reciprocal-lattice vectors
in Eqs. (4.18a) and (4. 18b) are set equal to zero.
For the umklapp terms the momentum tensors are
evaluated by adding together all terms where all
but one of the reciprocal-lattice vectors are zero.
Recall that it was the difficulty in calculating the
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FIG. 11, Schematic representation of the three transi-

tions which can occur in a periodic system including pho-
nons. Process 1 is a direct interband transition. Pro-
cess 2 is an indirect (or phonon-assisted) interband tran-
sition, and process 3 is an intraband (or Drude) transition.

optical matrix elements for a periodic system which
led to the diagrammatic formulation. & has been
found in Eqs. (4.17a)-(4.17c) that these matrix
elements can be expressed in terms of momentum
tensors made up of all poss1ble products of any
two vectors K d, or Q weighted by the wave-func-
tion coefficients of the intermediate as well as the
initial and final states Since the wave-function
coefficient lx,,(K Q,)I represents the probability
that a state of wave vector K in band # has a mo-
mentum 7Z(K +Q,), the above results make sense
physically,

V. NUMERICAL CALCULATIONS AND RESULTS

The final form of the transverse dielectric tensor
is

Ime;, (0, w)=Ime0(0, w)+ImeS2(0, w), (5.1)

where the first term is given by Eq. (4.15) and the
second term by Eq. (4.16a). The ion structure fac-
tor which appears in the latter equation is to be
evaluated by Eqs. (3.11a) and (3. 11b), where the
real-phonon spectrum replaces the bare spectrum
because the dressed-phonon propagators are used
in the diagrams. The complicated nature of the
remaining momentum integrals requires the use of
numerical techniques for their evaluation. The
Gaussian quadrature method was used for the inte-
grations rather than Simpson’s rule, since this
method gives convergent results for a relatively
small number of points. The convergence of the
integrals was checked by increasing the number of
points and comparing the result to the original value
of the integral.

Several approximations have been made in connec-
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tion with the self-energy. These approximations
were checked by calculating their effects on Imef.,‘,”
x(0, w). First, the zero-order term was calculated
from Eq. (4.1), which contains no self-energy ef-
fects. This is the solid curve of Fig. 10 and is es-
sentially the same as Butcher’s calculation for the
interband absorption. Then Eq. (4.5) was used to
compute the zero-order term, thus including the
imaginary part of the self-energy only. This is the
dotted curve of Fig. 10. Finally, the real as well
as the imaginary part of the self-energy was included
by using the value of Ashcroft and Wilkins, A gy /m*
=0. 847, for the effective mass in sodium. This
gives the dashed curve of Fig. 10. The inclusion

of the effective mass reduces the peak absorption by
about 15% and shifts the peak position by less than
0.5 eV in addition to smearing out the threshold.

The constant lifetime approximation for the imag-
inary part of the self-energy was used since only
high-energy optical excitations were calculated. It
can be seen from Eq. (4.13) that this is a good ap-
proximation in the optical region. In the infrared
range where the excitation energy is smaller, this
approximation breaks down. However, the calcula-
tion is not good in this region anyhow since the pho-
non energy was neglected compared to the optical
excitation energy in the electron factors. As a re-
sult, the real part of the conductivity becomes in-
finite at zero excitation energy w instead of ap-
proaching its dc value.

The theoretical results which have been obtained
are compared to Smith’s*?2 data in Fig. 12 for sodi-
um. The results are in general agreement with
Smith’s data in the range of photon energies 0.5-3.0
eV. However, the structure due to the phonon-as-
sisted transitions at about 1.0 eV is not present in

1.35 T T T T T T T T T T T
SODIUM
1.20 - -
—o— EXPER.- SMITH
105~ ~e— THEORY (T = 293°K) N
(INCLUDING CLASS B)
90 ~—— THEORY (T = 293°

K)
(NOT INCLUDING CLASS B)
75 GAP = 0.45 eV -

1
Ime;, (0.0)
-d
o
T

1 | i e ! Il L It
15 20 25 30 35 40 45 50 55 60

w(ev)

FIG. 12. Plot of the theoretical curves of Ime* vs w
for Na at 293 °K compared to Smith’s data. The upper
curve shows the absorption due to the renormalized zero-
order class-A vertex and class-B diagrams. The middle
curve displays Smith’s experimental values, and the
lower curve shows the effect of not including the class-B
diagrams.
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the data because of the difficulty in resolving this
peak experimentally. The direct interband peak is
barely resolved in the data and coincides with the
theoretical threshold. The reason for the agree-
ment in this region is that the combination of intra-
band and indirect interband absorption falls less
rapidly than the background calculated from the
simple Drude formula. Since previous calculations
of the direct interband absorption were superimposed
on the Drude background, the results for sodium
were too small by as much as 50%. Between 3.0
and 4.0 eV the theoretical curve departs radically
from the experimental values. The deviation is due
to a broad plasmonlike peak occurring above 3.0 eV
eV, which is produced by the class-B (or dynamic
screening) term. When the class-B term is re-
moved, the absorption drops off faster than the ex-
perimental curve, as shown in Fig. 12. This indi-
cates two things: First, the Coulomb interactions
between conduction electrons tend to raise the ab-
sorption at the higher frequencies, and second, the
class-B term alone is not sufficient to give the cor-
rect results above 3.0 eV. In order to obtain better
agreement with experiment in the range of photon
energies above 3.0 eV, it is necessary to include
vertex, self-energy, and possibly ladder-type
graphs in the Coulomb interaction, as indicated in

a paper by Bardasis and Hone® on the many-body
effects in semiconductors. Thus, the main empha-
sis should be placed on evaluating the optical matrix
elements in the two-band model near the thresholds
for processes 1 and 2; however, above the direct
interband threshold, the Coulomb interactions must
be taken into account more carefully.
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APPENDIX: FEYNMAN RULES IN MOMENTUM SPACE
Dielectric constant:

Ime,, (0, ) = (47%%/w?) Re[M, () - M,,( - w)] ,

(A1)
where the matrix elements are given by
M, (w)= 2 G, (A2)
i1

and G, is a linked graph. The rules for contribu-
tions from graphs G; are

v Uo a iy
_ « - »
K K+0Qq I 9
(a) (b)
~ - K+Q K+0,
U 2 v* N/ ¢
q ¥ (0,w)
(c) (d)
T w
—_——— — - ANNNN AN
T q
(e) (t)
FIG. 13. Feynman graphs for various interaction lines.

factor of (-2)%/2w, (A3)

where L is the number of closed particle loops and
2 is the spin factor.
For each particle line, as in Fig. 13(a), there is

a factor
iGo(K, K+Qq, v) . (A4)

For each phonon line with bare electron-ion inter-
actions at the ends, as in Fig. 13(b), thereis a
factor

I )T (a8, 4", @) . (A5)

For each phonon line with screened electron-ion
interaction at the ends, as in Fig. 13(c), there is
a factor

Uyq) _T3a@)
€ll(d’,, Q) €I|(a’, Q)

For each electron-phonon vertex, as in Fig. 13(d),
there is a factor

(Kv+Qav)/m0 . (A7)

For each bare-Coulomb-interaction line, as in Fig.
13(e), there is a factor

Sfa,q’, Q) . (A6)

-iv.(q) . (A8)

For each screened-Coulomb-interaction line, as in
Fig. 13(f), there is a factor

—iVac(a’ 6,9 w) . (AQ)
Conserve energy and momentum at each
vertex using (2r)% times a momentum (A10)

6 function at the last vertex encountered
to force momentum conservation.
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Sum over all reciprocal-lattice vectors and inte-
grate over all internal momenta and energies:

KARAKASHIAN AND A. BARDASIS

|

(A11)

Ef (:3{3_/. 2"

*Supported in part by Advanced Research Project Agency
ONR and U. S. Air Force Office of Scientific Research;
Submitted by A. S. Karakashian in partial fulfillment of
the Ph. D. degree in physics at the University of Maryland.

TPresent address: Department of Physics, Lowell Tech-
nological Institute, Lowell, Mass.

'H, Mayer and M. H. El Naby, Z. Physik 174, 269
(1963).

’H, Mayer and B. Hietel, in Optical Properties and
Electronic Structure of Metals and Alloys, edited by
F. Abeles (North-Holland, Amsterdam, 1966), p. 47.

3J. N. Hodgson, in Ref. 2, p. 60.

N. V. Smith, Phys. Rev. Letters 21, 96 (1968).

P. N. Butcher, Proc. Phys. Soc. (London) A64, 765
(1951).

6P. A. Wolff, Phys. Rev. 116, 544 (1959).

TA. W. Overhauser, Phys. Rev. 156, 844 (1967).

A. O. E. Animalu, Phys. Rev. 163, 557 (1967); 163,
562 (1967).

%J. J. Hopfield, Phys. Rev. 139, A419 (1965).

105, J. Nettel, Phys. Rev. 150, 421 (1966).

N, M. Miskovsky and P. H. Cutler, Department of

Physics Report, University of Pennsylvania, 1969 (un-
published).

2R, A. Ferrell, in Ref. 2, p. 78.

13D, Pines, Elementary Excitations in Solids (Benjamin,
New York, 1963), p. 199.

141, P, Kadanoff and P, C. Martin, Phys. Rev. 124,
670 (1961).

15¢, Kittel, Introduction to Solid State Physics (Wiley,
New York, 1966), pp. 253—264.

18F, S. Ham, Phys. Rev. 128, 82 (1962).

"M, J. G. Lee, Proc. Roy. Soc. (London) A295, 440
(1966).

18E-Ni Foo and J. J. Hopfield, Phys. Rev. 173, 635
(1968).

133, R. Schrieffer, Superconductivity (Benjamin, New
York, 1964), p. 156.

20A, S. Karakashian and A. Bardasis, Phys. Letters
324, 17 (1970).

2IN. W. Ashcroft and J. W. Wilkins, Phys. Letters 14,
285 (1965).

2N, V. Smith, Phys. Rev. 163, 552 (1967).

%A, Bardasis and D. Hone, Phys. Rev. 153, 849 (1967).



